In this post we are going to design various artificial intelligence agents to play the classic version of **Pacman**, including ghosts and capsules. Pacman is a famous Atari game developed back in 1979 by a nine-persons team and then released in 1980 by the former Japanese developer and publisher of arcade video games Namco. The great success the game had at the time, made it survive until the present days becoming one of the greatest and influential video games of all time. The player, or the agent in our case, controls a yellow character called Mr.Pacman whose objective is eating all the dots placed in the maze while avoiding the four colored ghosts pursuing him. Given the popularity of the game, it’s rules are also well-known and I probably don’t need to explain them here. However, in order to test the agents’ performances, the original game’s rules have been slightly simplified bringing the following changes:

- The
**ghosts**are all controlled by the**same**kind of**AI**. - There is
**not a fixed**number of**ghosts**. - Eating a
**dot**rewards**10**points. - Each
**step**will**decrease 1**point. - The game
**ends**when all the dots have been cleared**or**when a ghost eats Mr.Pacman, no extra lifes. - Eating a
**capsule**will cause the ghosts to be**scared**, a scared ghost will have its speed halved and will escape from the player rather than pursuing him. - Eating a
**scared ghost**rewards**200**points. **Winning**the game rewards**500**points.**Loosing**the game will subtract**500**point.- There are
**different**kinds of**mazes**. - Some mazes are very
**challenging**🙂

Now that we have explained our own new rules, let’s watch a useful and interesting video displaying one of the agents we are going to implement playing a match in the original maze. Afterwards, we are going to understand their logic and implementation in the following sections.

### Agents overview

In the next sections we are going to develop 5 different agents to control our Mr.Pacman along the mazes. Nevertheless, one of these agents is just a more efficient version of another one, so our 5 agents are going to play accordingly to only 4 different behaviors. The following list briefly introduces each agent’s strategy leaving their details in the subsequent paragraphs:

**Reflex Agent**: an agent that considers food locations, ghost locations and score of the current situation to decide its next action.**Minimax****Agent**: an adversarial search agent implementing minimax algorithm but that keeps into consideration the presence of multiple adversarial agents (ghosts).**AlphaBeta Pruning****Agent**: an adversarial search agent implementing minimax algorithm with alpha-beta pruning to more efficiently explore the minimax tree. Basically, alpha-beta pruning is just a faster version of the standard minimax.**Expectimax Agent**: an adversarial search agent implementing expectimax algorithm, it also keeps into consideration the presence of multiple adversarial agents.**Deep Search Agent**: a deep search algorithm that attempts to find the best possible path given an evaluation function. It is faster than minimax but doesn’t keep into considerations ghosts. A similar algorithm has been proposed in this post to make a powerful agent to play the game of Snake.

**Important**: It is worth to point out that all these agents are based on hard-coded algorithms, thus there is no learning process.

### Ghosts AI

In this version of the game have been implemented two different policies to move ghosts. The first one is very simple: ghosts will just wander around the maze randomly, hence, we are going to name them **random ghosts**. This policy has been designed to be very simple for Pacman agents to win against them, so that even simpler AI agents can have a chance to survive. Anyway, sometimes also random ghosts can put in trouble the most sophisticated agents, specially when grouped in big clusters or moving in particularly tricky mazes.

The second kind of policy is a smarter than the first one and make ghosts taking that actions to reduce their distance to Mr.Pacman. Ghosts controlled by this policy are called **directional ghosts** and represent a much more challenging scenario respect to the naive random ghosts. In fact, they are able to pursue Mr.pacman indefinitely and the only way to get rid of them is eating a capsule which would cause them being scared and running away from the player. Anyway, these ghosts still show many flaws since they use to act independently without engaging in cooperative tactics and can temporarily get stuck in some particularly tricky paths such as dead ends.

### Reflex Agent

The first agent we are going to analyze is the **Reflex** **Agent**. It consists of a simple agent that only take actions based on the **current** situation of the **state** of environment ignoring past and future states. It is based on the simple “*condition-action*” logic (i.e. ghost on the left and dot on the right -> go right). More specifically, it uses an **evaluation function** to compute the goodness of a state and chooses that actions leading to the state with the highest score among the possible ones. The evaluation function takes into consideration some observation about the environment such as the distance to the closest dot, the distance to the closest ghost and whether it is scared or not as well as the current score. The value of a state is computed by a **linear combination** of the above listed variables that are always known since the agent is acting in a **fully observable state**, namely, it always knows everything about the environment such as score and element positions. Despite its simplicity, it behaves pretty well in most mazes, sometimes even competing with more advanced agents, thus representing a good baseline to compare future AIs. The agent is also very fast since it doesn’t require any recursive call, making it suitable also for very big mazes where other agents would be terribly slowed down due to their high computational cost. Nevertheless, a noticeable flaw is that sometimes Reflex agents can remain stuck in possible loops, thus requiring taking random actions to escape from them.

**Important**: Video 2 and Video 4 show a Reflex agent playing in two different mazes.

### Minimax Agent

The next agent we are going to study is the **Minimax Agent**. Minimax is a kind of backtracking algorithm that is used in decision making and game theory to find the **optimal move** for a player (maximizer), assuming that his opponent (minimizer) also plays optimally. Similarly to the Reflex agent, each state of the environment has a value associated with it computed through an evaluation function and the maximizer has to try to get the highest value possible while the minimizer has to try to do the opposite and get the lowest value possible. This algorithm is widely used in two player turn-based games such as Tic-Tac-Toe, Backgammon and Chess but we can generalize it to take into account the presence of **many adversarial agents** (minimizers) and extend it to more complicated games like Pacman.

For now, this explanation can be a little confusing, so let’s make an example to try to make things more clear. In our game **Mr.Pacman** is the **maximizer** and has to choose the best possible move, However, at the beginning it has no idea where to go, what should it do in this case? First, he could begin by checking all the actions it can take, that are, going left, right, forward or backward. Among those directions, it has to discard that directions it can’t go because of the walls of the maze blocking the way. At this point it would like to know the value of each action it can take in order to choose the optimal one. Hence, it tries to move in each of the remaining directions, thus, changing the state of the environment. In fact, its actions would cause the movement of itself by one position, could result in one dot being eaten, thus increasing its score, or could result in the player being eaten by a ghost causing game over. If the latter condition would be true, then the current branch terminates returning the value of the evaluation function computed at the reached state (it would be a low value since Mr.Pacman got eaten). Otherwise, the research continues and this time is the turn of the first **ghost**, which is one of the **minimizers**, to move. Similarly to how Mr.Pacman did, also the ghost tries all of its possible moves. Once a ghost has moved, the next ghost takes its action until all ghost wouldn’t have moved. After the last ghost has moved, a cycle has finished and Mr.Pacman can now take another action. Afterwards, the first ghost moves again, then the second one and so on until won’t be reached a fixed depth or a ghost wouldn’t have eaten the player. Once a branch of the tree has been fully expanded until its leaf, the algorithm does **backtracking** returning the value of the state with the maximum value for Mr.Pacman and the value of the state with minimum value for the ghosts. In this way, the ghosts will have always chosen their best possible moves while the player will have chosen its best moves. Once the tree has been fully backtracked until the root, the algorithm will return the value of the best possible move Mr.Pacman can take computed with each agent (both player and ghosts) playing according to their best moves.

I can see the future and it allows me to select the best possible move

Minimax Agent.

Minimax is an excellent algorithm since it can return the best possible move in these kind of games, also known as **zero-sum games**, where the environment is fully observable and the game is not influenced by external factors such as luck. Anyway, all that glitters is not gold, despite its tremendous efficacy, minimax algorithm is terribly slow even when involved only two player (a minimizer and a maximizer). Never mind the computational cost required to expand the minimax tree taking into account all the adversarial agent with all their possible moves. For example, for Mr.Pacman, performing a 3 depth research in a maze with only 2 ghosts would mean simulating at most 4^{3x(2+1)} steps (but less considering that some branches might be cut because of Mr.Pacman game over or actions blocked by walls) which would be infeasible to use in big mazes with lot of ghosts and at the same time useless, even in smaller mazes, if the research depth is not enough.

Here is reported the pseudo-code of the minimax algorithm with multiple adversarial agents searching for the value of the best action.

def minimax(agent, depth, gameState): # if the game has finished return the value of the state if gameState.isLose() or gameState.isWin() or depth == max_depth: return evaluationFunction(gameState) # if it's the maximizer's turn (the player is the agent 0) if agent == 0: # maximize player's reward and pass the next turn to the first ghost (agent 1) return max(minimax(1, depth, gameState.generateSuccessor(agent, action)) for action in getLegalActionsNoStop(0, gameState)) # if it's the minimizer's turn (the ghosts are the agent 1 to num_agents) else: nextAgent = agent + 1 # get the index of the next agent if num_agents == nextAgent: # if all agents have moved, then the next agent is the player nextAgent = 0 if nextAgent == 0: # increase depth every time all agents have moved depth += 1 # minimize ghost's reward and pass the next ghost or the player if all ghosts have already moved return min(self.minimax(nextAgent, depth, gameState.generateSuccessor(agent, action)) for action in getLegalActionsNoStop(agent, gameState))

### AlphaBeta Agent

The minimax algorithm can have its huge search tree pruned by applying a tweak known as **Alpha-Beta pruning** which can reduce its computation time by a significant factor. This tweak allows the search to proceed much faster cutting unnecessary branches which need not be searched because there already exists a better move available. The name alpha-beta pruning is because it requires 2 extra parameters to be passed in the minimax function, namely, *alpha* and *beta*:

**Alpha**is the best value that the**maximizer**currently can guarantee at that level or above and is initialized to`-inf`

.**Beta**is the best value that the**minimizer**currently can guarantee at that level or above and is initialized to`+inf`

.

The two new parameters are used to prune those branches that cannot possibly influence the final decision. Whenever the maximum score that the minimizing player (beta player) is assured of becoming less than the minimum score that the maximizing player (alpha) is assured of, thus if *beta* < *alpha*, the maximizing player doesn’t need consider further descendants of this node, as they will never be reached in the actual play.

Above is showed a simple example of an alpha-beta pruning minimax variant tree where the nodes at the first and third depth level are maximizers (green ones) and the two nodes at the second level are minimizers (pink ones). In a scenario where the tree is explored following the left-first rule, we would find a value equal to min(5, 6)=5 for the left minimizer node, thus alpha=5. Then, during the exploration of the right subtree, we find that the right minimizer node has found a leaf with value 4, thus beta=4. Now the condition beta < alpha is true so the algorithm doesn’t need to explore the right leaf of the right minimizer that would be 7. This is because the right minimizer would choose the smaller one among its child which is 4 that is less than 5 found by the left minimizer. Considering that the top maximizer node would choose the bigger between its child, which is the left node with a value of 5, the exploration of the right node of the right minimizer wouldn’t have influenced the final outcome.

If future is not suitable to me, then I will discard it.

AlphaBeta Agent

During evaluation it will be used this algorithm (**AlphaBeta Agent**) instead than the standard minimax considering both algorithms yield the same results but in practice the alpha-beta pruning variant can save up to half of the total time.

### Expectimax Agent

The last multi-agent adversarial searching algorithm we are going to explore is the **Expectimax Agent**. The expectimax algorithm is a variation of the minimax algorithm that takes into account also the uncertainty in the environment. The maximizers nodes of the tree work as in minimax but the minimizers nodes are replaced by chance nodes whose value is not the value of the minimum of their children but it will be computed as the **expectation** of their children’s value. Note that in order to calculate this expectation there must be a known probability of reaching each child. However, for most games, Pacman included, child nodes will be equally-weighted, which means the return value can simply be the average of all child values. This assumption is not true in the case of directional ghosts but it suggests us that expectimax might works better against random ghosts. For the rest, expectimax algorithm has the same structure of minimax but it is not possible to apply alpha-beta pruning since we don’t have the exact bounds on possible values (but we can still approximate them).

### Minimax vs Expectimax

Before going on with the last agent, let’s take a break and compare the effectiveness of minimax and expectimax in a particular scenario.

As we can see from the above picture, we have that Mr.Pacman is trapped between two ghosts. Apparently it has no chance to survive. But what if the ghosts take only random actions? Let’s start with the **minimax** agent and observe the result.

As expected, the minimax agent will decide that being eaten by the red ghost is the best move to maximize its score…And it’s actually right. In fact, it doesn’t know that the ghosts act randomly but knows that if the two ghosts move following their optimal policy it would have any chance to win the game. Moreover, since for each step the score would be decreased by 1, minimax algorithm finds out that being eaten as soon as possible is the best move to increase its score, or better, to decrease it the least possible.

Now let’s play again in the same maze, but this time deploying an **expectimax** agent.

Magically, it manages to eat all dots in such a tricky maze. Anyway, as we remember how expectimax works we shouldn’t be so surprised. In fact, the algorithm assumes ghosts act **randomly** and in this case it is exactly how the ghosts move. Thus, when searching for its best possible move, it keeps into consideration the possibility of ghosts taking the wrong action, namely stepping away from Mr.Pacman. In this way the blue ghost may open a way for the player to eat all the tree dots and win the game.

### Deep Search Agent

The last agent we are going to see is still a depth search agent but unlike its predecessors, it doesn’t take into consideration the presence of ghosts. This way it can save the computation time ghosts needed to simulate their moves and use it to further expand the search tree of its own moves. This modification allows the agent to localize also more distant elements but the solution won’t be optimal since it doesn’t keep in consideration the fact that a ghost might be found in a certain position but moving to another position where it could obstruct the best path found by the algorithm in a future step. Anyway, considering the best path is recomputed after each step, in practice this agent behaves quite well in most of the mazes and is not influenced by the number of ghosts but only by the depth of its own search tree. Furthermore, it doesn’t evaluate only the goodness of the state found at the end of each branch, but the values of the explored states in the same branch are summed up to give a value to each branch and not just to the single leaves. **This trick allows the agent to take its decisions not only based on the final state but on what actually happens along the path to reach it**. Its evaluation function is computed in a way similar, but not the same, to the evaluation function of the Reflex agent but values of deeper states are discounted to give more importance to nearer states, which are also more likely to occur (this concept is similar to the discount factor used to compute rewards in reinforcement learning algorithms). Considering that this agent ignores ghosts during its search, high value of research depth are not very useful since ghosts can change their position while exploring more distant states. In practice, values between 2 and 6 have resulted in giving the best performances in most of the mazes. We are going to call this last agent as **DeepSearch Agent** **X** where X is the maximum depth of its research tree. This algorithm has been re-proposed here since it already achieved very good results in the game of Snake.

**Important**: Video 1, Video 3 and Video 5 show a DeepSearch 6 agent playing in three different mazes.

### Mazes overview

Now that we have finished describing all the agents, let’s have a look at the different **mazes** they have been tested, leaving their results in the last section.

The first maze is the **medium** maze, it is not to difficult neither too hard and can successfully be completed by all the agents. Beside the two ghosts, the maze doesn’t present any particular obstacle and can also be easily won by a human player.

The second one is the **open** maze. The absence of walls inside the arena heavily slows down the multi-agent adversarial algorithms as well as the deep search one and in rare occasions it might cause the Reflex agent to indefinitely loop around a dot pursued by the ghost preventing the game to be finished. Nevertheless, given the structure of the maze, deep research trees are obsolete and elementary algorithms can often perform better than more complex ones.

Abandon all hope, ye who enter here.

Tricky maze welcome message

The third one is the feared **tricky** maze. We can consider it as a Pacman agents’ graveyards since no agents managed to complete it when directional ghosts were wandering around. In fact, it has been designed to be particular difficult for artificial intelligence to move through it and only deep search algorithms are able to perform quite will in it despite none of the ever managed to win. Conversely, it is possible to win if ghosts are random, but still with very low success rate.

The fourth and last maze is the **original** maze of the classic Pacman which is shown at the beginning of the post with the DeepSearch 6 agent completing it.

### Agents comparison

In this last section we are going to evaluate the performance of all the agent and compare them in four tables, one for each maze. Each agent has been made running for 100 games in all the 4 mazes, one by one, two times: the first time with random ghosts and the second time with the more feared directional ghosts wandering around.

**Important**: Minimax agent uses the alpha-beta pruning variant and for both minimax and expectimax has been used a depth value o 2.

**Important**: There is a very low chance that Reflex agent can gets stuck in the open maze with directional ghosts. In that case there is nothing to do but close the program and run it again.

agent | random ghost | directional ghost |
---|---|---|

Reflex | 1336 (0.74) | 351 (0.06) |

Minimax | 371 (0.10) | 166 (0.03) |

Expectimax | 426 (0.18) | 177 (0.04) |

Deep Search 2 | 1336 (0.82) | 534 (0.18) |

Deep Search 6 | 1468 (0.87) | 753 (0.35) |

“score (win ratio)” format

agent | random ghost | directional ghost |
---|---|---|

Reflex | 972 (1) | 1218 (1) |

Minimax | 728 (0.92) | 712 (0.54) |

Expectimax | 749 (0.90) | 685 (0.57) |

Deep Search 2 | 1239 (1) | 1233 (1) |

Deep Search 6 | 1240 (1) | 1235 (1) |

“score (win ratio)” format

agent | random ghost | directional ghost |
---|---|---|

Reflex | 708 (0.09) | 192 (0) |

Minimax | 238 (0.01) | -60 (0) |

Expectimax | 317 (0) | -61 (0) |

Deep Search 2 | 713 (0) | 404 (0) |

Deep Search 6 | 729 (0) | 492 (0) |

“score (win ratio)” format

agent | random ghost | directional ghost |
---|---|---|

Reflex | 1319 (0.25) | 489 (0) |

Minimax | 424 (0.) | 381 (0) |

Expectimax | 403 (0) | 249 (0) |

Deep Search 2 | 1477 (0.43) | 789 (0.01) |

Deep Search 6 | 1654 (0.54) | 740 (0.01) |

“score (win ratio)” format

Due to hardware limitations, multi-agent adversarial algorithms have used a very limited search depth. Therefore, Minimax and Expectimax agents didn’t perform very well but their effectiveness has been proved in smaller size mazes where even a very deep search range would result in a still manageable tree. Overall, the DeepSearch 6 agent seems achieving the best scores on most of the mazes making it the best performing agent followed by DeepSearch 2 and Reflex. Furthermore, it’s interesting observing how the Reflex and Minimax agents were the only two agents which managed to win in the tricky maze with random ghosts while the DeepSearch agents were the only ones to win the original maze with directional ghost, that is, they won in the real Pacman game.

### Find more on

### References

- http://ai.berkeley.edu/multiagent.html
- https://en.wikipedia.org/wiki/Minimax
- https://en.wikipedia.org/wiki/Expectiminimax
- https://en.wikipedia.org/wiki/Pac-Man